Undecidability of FOL

Computability and Logic



Reducing the Halting Problem to
the FOL Consequence Problem

We’ll show that FOL is undecidable by showing that we can cast the
Halting Problem as a FOL problem.

That is, we will use FOL statements to describe the configurations
and workings of a Turing-machine M when given some kind of input
tape T, and thus pose the Halting Problem as a logic problem.

Thus, we reduce the Halting problem to the FOL Consequence
problem.

So, if we could solve FOL Consequence (the Enscheidungsproblem!)
we would thereby solve the Halting Problem.

Since we (most likely) can’t solve the Halting Problem, we therefore
can’t solve the FOL Consequence problem either: FOL is
undecidable!



A Simple Class of Turing-Machines

* To keep things as simple as possible, we'll restrict
ourselves to the following kind of Turing-
machine:

— Binary alphabet
— One-sided infinite tape
— Starting state is q,
— Halting state is q
e |t can easily be shown that, even as defined over

this restricted kind of machine, the Halting
Problem is still unsolvable.



Describing Turing-Machines

o We’'ll describe Turing-machines using the
following predicates, functions, and constants,
that have the provided standard interpretation |
with its domain the set of natural numbers:

— 0: the number O

— s: the successor function

— S(t,i): After t steps, the machine is in state i

— C(t,i): After t steps, the machine is looking at cell |
— M(t,i): After t steps, square i contains a 1 (‘mark’)

Numbering  1o]1]1]12]12]0]2]0]0
the squares: 01 2 3




Describing Transitions

e All transitions naturally translate in FOL
expressions. Example:

—Transition: <i, 0, 1, j> (“if you are in state i,
and see a 0, write a 1, and go to state j”)

— Corresponding FOL statement:

vt Vx [(S(t,i) A C(t,x) A =M(t,x)) =
(S(s(t),j) A C(s(t),x) A M(s(t),x) A
vy (y # x = (M(s(t),y) < M(t,y))))]



Set Dy ¢

e Every transition A gets a corresponding
statement D,. All these statements will be put
into set Dy, ;

— Note: Here is the easiest way to deal with a Left
action <i, 0O, L, j>:
vt Vx [(S(t,i) A C(t,s(x)) A =M(t,5(x))) =
(S(s(t),j) A Cls(t),x) A ¥y (M(s(t),y) <> M(t,y))]

— Also, let’s say that when trying to move left of the
left-most square, the Turing-machine will stay at

the left square. Thus, add:
vt Vx [(S(t,i) A C(t,0) A =M(t,0)) —
(S(s(t),j) A C(s(t),0) A Yy (M(s(t),y) <> M(t,y))]



Starting Configuration

e Use the statement S to describe the starting
configuration. Assume that squares x,, ... X,
are the non-zero squares:

e S$=5(0,5(0)) A C(0,0) A M(0,%) A ... A M(O,x,) A
vy (=(y=x; v ... vy=x,) &> =M(0,y))
* Swill also be putinto Dy, ;



Halting Statement

 The following statement H captures what it
means for the machine to halt:

 H=4tS(t,0)



Description Statement

* The following statement D, ;. describes the
machine and tape configuration we find
ourselves in after t steps of operation. Thus,
where x,, ... X, are the non-zero squares at
that time, where x_ is the square the machine
is at, and g, the state it is in:

* Dy = S(t,0) A C(t,x,) A M(0,x,) A ... A M(O,%)
A VY (=(y=x; v ... vy=x,) &> =M(0,y))



The Central Theorem

We want to claim that given any machine M and
input tape T, it is true that for any step t: Dy, F Dy, 1,

Proof: By induction on t
Base:t=0.Dy;,=S,andS € Dy, so Dy, E Dy 10

Step: Here, we just have to show that for the
transition A that applies at time t, the statement
Dyi1te1 i implied by the statement D, thatis in Dy, 1,
together with statement Dy, ;.. Thus, the inductive
hypothesis that Dy, ; E Dy, ;.implies that D, ; F

Dy 711 @S desired.



Example

Again, let’s consider A =<i, 0, 1, j>.

That is, suppose that this is the next transition the machine has to take
after having taken t steps, that x,, ... x, are the non-zero squares at that
time, and that x,, is the square the machine is at.
Thus, by inductive hypothesis, we have:
— Dpre=S(ti) A C(t,x,) A M(tx) Ao AMIEX) A VY (S(y=Xx; Vo viy=x) —
=M(t,y))
We also have:
— D, =Vt Vx [(S(ti) A C(t,x) A =M(t,x)) = (S(s(t),j) A C(s(t),X) A M(s(t),x) A Vy
(y£x — (M(s(t),y) <> M(t,y)))]
Eliminate/instantiate the universals with t,i, and x,, and you’ll find that
you can derive:
— Dyt = S(S(E)1) A CIS(E), %) A M(S(t),X;) A e A M(5(t), %) A M(5(t),X,) A
(—(y=x; V ... Vy=X, Vv y=x.) = =M(s(t),y))
— (actually, this is not quite true: you need that for any two numbers x and y:
x =y iff D\, ; E x =y. But this is easily achieved by adding PA1 and PA2 to Dy, +)



What we Get

e Using the Central Theorem, it is easy to show
that machine M with input T halts if and only
if Dy, F H:

— If Dy, 1 F H then for any interpretation that is a
model for Dy, is a model for H. Since the standard
interpretation | is a model for Dy, ;, we thus know
that | E H, i.e. machine M with input T will halt.

— |If machine with input T halts, then there is some
time t, at which the machine halts. Since by the
Central Theorem Dy, E Dy, 1, Where Dy, 1y F H,
we thus have that Dy, ; = H.
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