
Undecidability of FOL

Computability and Logic

Reducing the Halting Problem to
the FOL Consequence Problem

• We’ll show that FOL is undecidable by showing that we can cast the
Halting Problem as a FOL problem.

• That is, we will use FOL statements to describe the configurations
and workings of a Turing-machine M when given some kind of input
tape T, and thus pose the Halting Problem as a logic problem.

• Thus, we reduce the Halting problem to the FOL Consequence
problem.

• So, if we could solve FOL Consequence (the Enscheidungsproblem!)
we would thereby solve the Halting Problem.

• Since we (most likely) can’t solve the Halting Problem, we therefore
can’t solve the FOL Consequence problem either: FOL is
undecidable!

A Simple Class of Turing-Machines

• To keep things as simple as possible, we’ll restrict
ourselves to the following kind of Turing-
machine:
– Binary alphabet
– One-sided infinite tape
– Starting state is q1

– Halting state is q0

• It can easily be shown that, even as defined over
this restricted kind of machine, the Halting
Problem is still unsolvable.

Describing Turing-Machines

• We’ll describe Turing-machines using the
following predicates, functions, and constants,
that have the provided standard interpretation I
with its domain the set of natural numbers:
– 0: the number 0
– s: the successor function
– S(t,i): After t steps, the machine is in state i
– C(t,i): After t steps, the machine is looking at cell i
– M(t,i): After t steps, square i contains a 1 (‘mark’)

1 1 1 1 1 0 0 0 0
0 1 2 3 …

Numbering
the squares:

Describing Transitions

• All transitions naturally translate in FOL
expressions. Example:
– Transition: <i, 0, 1, j> (“if you are in state i,

and see a 0, write a 1, and go to state j”)
– Corresponding FOL statement:
 ∀t ∀x [(S(t,i) ∧ C(t,x) ∧ ¬M(t,x)) →
 (S(s(t),j) ∧ C(s(t),x) ∧ M(s(t),x) ∧
 ∀y (y ≠ x → (M(s(t),y) ↔ M(t,y))))]

Set DM,T

• Every transition A gets a corresponding
statement DA. All these statements will be put
into set DM,T
– Note: Here is the easiest way to deal with a Left

action <i, 0, L, j>:
 ∀t ∀x [(S(t,i) ∧ C(t,s(x)) ∧ ¬M(t,s(x))) →
 (S(s(t),j) ∧ C(s(t),x) ∧ ∀y (M(s(t),y) ↔ M(t,y))]

– Also, let’s say that when trying to move left of the
left-most square, the Turing-machine will stay at
the left square. Thus, add:

 ∀t ∀x [(S(t,i) ∧ C(t,0) ∧ ¬M(t,0)) →
 (S(s(t),j) ∧ C(s(t),0) ∧ ∀y (M(s(t),y) ↔ M(t,y))]

Starting Configuration

• Use the statement S to describe the starting
configuration. Assume that squares x1, … xk
are the non-zero squares:

• S = S(0,s(0)) ∧ C(0,0) ∧ M(0,x1) ∧ … ∧ M(0,xk) ∧
∀y (¬(y=x1 ∨ … ∨ y=xk) → ¬M(0,y))

• S will also be put into DM,T

Halting Statement

• The following statement H captures what it
means for the machine to halt:

• H = ∃t S(t,0)

Description Statement

• The following statement DM,T,t describes the
machine and tape configuration we find
ourselves in after t steps of operation. Thus,
where x1, … xk are the non-zero squares at
that time, where xm is the square the machine
is at, and qi the state it is in:

• DM,T,t = S(t,i) ∧ C(t,xm) ∧ M(0,x1) ∧ … ∧ M(0,xk)
∧ ∀y (¬(y=x1 ∨ … ∨ y=xk) → ¬M(0,y))

The Central Theorem

• We want to claim that given any machine M and
input tape T, it is true that for any step t: DM,T ⊨ DM,T,t

• Proof: By induction on t
• Base: t = 0. DM,T,0 = S, and S ∈ DM,T , so DM,T ⊨ DM,T,0

• Step: Here, we just have to show that for the
transition A that applies at time t, the statement
DM,T,t+1 is implied by the statement DA that is in DM,T ,
together with statement DM,T,t. Thus, the inductive
hypothesis that DM,T ⊨ DM,T,t implies that DM,T ⊨
DM,T,t+1 as desired.

Example
• Again, let’s consider A = <i, 0, 1, j>.
• That is, suppose that this is the next transition the machine has to take

after having taken t steps, that x1, … xk are the non-zero squares at that
time, and that xm is the square the machine is at.

• Thus, by inductive hypothesis, we have:
– DM,T,t = S(t,i) ∧ C(t,xm) ∧ M(t,x1) ∧ … ∧ M(t,xk) ∧ ∀y (¬(y=x1 ∨ … ∨ y=xk) →

¬M(t,y))
• We also have:

– DA = ∀t ∀x [(S(t,i) ∧ C(t,x) ∧ ¬M(t,x)) → (S(s(t),j) ∧ C(s(t),x) ∧ M(s(t),x) ∧ ∀y
(y≠x → (M(s(t),y) ↔ M(t,y)))]

• Eliminate/instantiate the universals with t,i, and xm, and you’ll find that
you can derive:
– DM,T,t+1 = S(s(t),i) ∧ C(s(t),xm) ∧ M(s(t),x1) ∧ … ∧ M(s(t),xk) ∧ M(s(t),xm) ∧ ∀y

(¬(y=x1 ∨ … ∨ y=xk ∨ y=xm) → ¬M(s(t),y))
– (actually, this is not quite true: you need that for any two numbers x and y:

x = y iff DM,T ⊨ x = y. But this is easily achieved by adding PA1 and PA2 to DM,T)

What we Get

• Using the Central Theorem, it is easy to show
that machine M with input T halts if and only
if DM,T ⊨ H:
– If DM,T ⊨ H then for any interpretation that is a

model for DM,T is a model for H. Since the standard
interpretation I is a model for DM,T , we thus know
that I ⊨ H, i.e. machine M with input T will halt.

– If machine with input T halts, then there is some
time tH at which the machine halts. Since by the
Central Theorem DM,T ⊨ DM,T,tH, where DM,T,tH ⊨ H,
we thus have that DM,T ⊨ H.

	Undecidability of FOL
	Reducing the Halting Problem to �the FOL Consequence Problem
	A Simple Class of Turing-Machines
	Describing Turing-Machines
	Describing Transitions
	Set DM,T
	Starting Configuration
	Halting Statement
	Description Statement
	The Central Theorem
	Example
	What we Get

