
Undecidability of FOL 

Computability and Logic 



Reducing the Halting Problem to  
the FOL Consequence Problem 

• We’ll show that FOL is undecidable by showing that we can cast the 
Halting Problem as a FOL problem. 

• That is, we will use FOL statements to describe the configurations 
and workings of a Turing-machine M when given some kind of input 
tape T, and thus pose the Halting Problem as a logic problem. 

• Thus, we reduce the Halting problem to the FOL Consequence 
problem. 

• So, if we could solve FOL Consequence (the Enscheidungsproblem!) 
we would thereby solve the Halting Problem. 

• Since we (most likely) can’t solve the Halting Problem, we therefore 
can’t solve the FOL Consequence problem either: FOL is 
undecidable! 



A Simple Class of Turing-Machines 

• To keep things as simple as possible, we’ll restrict 
ourselves to the following kind of Turing-
machine: 
– Binary alphabet 
– One-sided infinite tape 
– Starting state is q1 

– Halting state is q0 

• It can easily be shown that, even as defined over 
this restricted kind of machine, the Halting 
Problem is still unsolvable. 



Describing Turing-Machines 

• We’ll describe Turing-machines using the 
following predicates, functions, and constants, 
that have the provided standard interpretation I 
with its domain the set of natural numbers: 
– 0: the number 0 
– s: the successor function 
– S(t,i): After t steps, the machine is in state i 
– C(t,i): After t steps, the machine is looking at cell i 
– M(t,i): After t steps, square i contains a 1 (‘mark’) 

1 1 1 1 1 0 0 0 0 
0 1 2 3 … 

Numbering  
the squares: 



Describing Transitions 

• All transitions  naturally translate in FOL 
expressions. Example: 
– Transition: <i, 0, 1, j> (“if you are in state i, 

and see a 0, write a 1, and go to state j”) 
– Corresponding FOL statement: 
 ∀t ∀x [(S(t,i) ∧ C(t,x) ∧ ¬M(t,x)) →  
 (S(s(t),j) ∧ C(s(t),x) ∧ M(s(t),x) ∧  
 ∀y (y ≠ x → (M(s(t),y) ↔ M(t,y))))] 



Set DM,T 

• Every transition A gets a corresponding 
statement DA. All these statements will be put 
into set DM,T 
– Note: Here is the easiest way to deal with a Left 

action <i, 0, L, j>:  
 ∀t ∀x [(S(t,i) ∧ C(t,s(x)) ∧ ¬M(t,s(x))) →  
 (S(s(t),j) ∧ C(s(t),x) ∧ ∀y (M(s(t),y) ↔ M(t,y))] 

– Also, let’s say that when trying to move left of the 
left-most square, the Turing-machine will stay at 
the left square. Thus, add:  

 ∀t ∀x [(S(t,i) ∧ C(t,0) ∧ ¬M(t,0)) →  
 (S(s(t),j) ∧ C(s(t),0) ∧ ∀y (M(s(t),y) ↔ M(t,y))] 



Starting Configuration 

• Use the statement S to describe the starting 
configuration. Assume that squares x1, … xk 
are the non-zero squares: 

• S = S(0,s(0)) ∧ C(0,0) ∧ M(0,x1) ∧ … ∧ M(0,xk) ∧ 
∀y (¬(y=x1 ∨ … ∨ y=xk) → ¬M(0,y)) 

• S will also be put into DM,T 



Halting Statement 

• The following statement H captures what it 
means for the machine to halt: 

• H = ∃t S(t,0) 



Description Statement 

• The following statement DM,T,t describes the 
machine and tape configuration we find 
ourselves in after t steps of operation. Thus, 
where x1, … xk are the non-zero squares at 
that time, where xm is the square the machine 
is at, and qi the state it is in: 

• DM,T,t = S(t,i) ∧ C(t,xm) ∧ M(0,x1) ∧ … ∧ M(0,xk) 
∧ ∀y (¬(y=x1 ∨ … ∨ y=xk) → ¬M(0,y)) 



The Central Theorem 

• We want to claim that given any machine M and 
input tape T, it is true that for any step t: DM,T ⊨ DM,T,t 

• Proof: By induction on t 
• Base: t = 0. DM,T,0 = S, and S ∈ DM,T , so DM,T ⊨ DM,T,0 

• Step: Here, we just have to show that for the 
transition A that applies at time t, the statement 
DM,T,t+1 is implied by the statement DA that is in DM,T , 
together with statement DM,T,t. Thus, the inductive 
hypothesis that DM,T ⊨ DM,T,t implies that DM,T ⊨ 
DM,T,t+1 as desired. 



Example 
• Again, let’s consider A = <i, 0, 1, j>.  
• That is, suppose that this is the next transition the machine has to take 

after having taken t steps, that x1, … xk are the non-zero squares at that 
time, and that xm is the square the machine is at.  

• Thus, by inductive hypothesis, we have: 
– DM,T,t = S(t,i) ∧ C(t,xm) ∧ M(t,x1) ∧ … ∧ M(t,xk) ∧ ∀y (¬(y=x1 ∨ … ∨ y=xk) → 

¬M(t,y)) 
• We also have: 

– DA = ∀t ∀x [(S(t,i) ∧ C(t,x) ∧ ¬M(t,x)) → (S(s(t),j) ∧ C(s(t),x) ∧ M(s(t),x) ∧ ∀y 
(y≠x → (M(s(t),y) ↔ M(t,y)))] 

• Eliminate/instantiate the universals with t,i, and xm, and you’ll find that 
you can derive: 
– DM,T,t+1 = S(s(t),i) ∧ C(s(t),xm) ∧ M(s(t),x1) ∧ … ∧ M(s(t),xk) ∧ M(s(t),xm) ∧ ∀y 

(¬(y=x1 ∨ … ∨ y=xk ∨ y=xm) → ¬M(s(t),y)) 
– (actually, this is not quite true: you need that for any two numbers x and y:      

x = y iff DM,T ⊨ x = y. But this is easily achieved by adding PA1 and PA2 to DM,T) 



What we Get 

• Using the Central Theorem, it is easy to show 
that machine M with input T halts if and only 
if DM,T ⊨ H: 
– If DM,T ⊨ H then for any interpretation that is a 

model for DM,T is a model for H. Since the standard 
interpretation I is a model for DM,T , we thus know 
that I ⊨ H, i.e. machine M with input T will halt. 

– If machine with input T halts, then there is some 
time tH at which the machine halts. Since by the 
Central Theorem DM,T ⊨ DM,T,tH, where DM,T,tH ⊨ H, 
we thus have that DM,T ⊨ H. 
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